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VI. CONCLUDING REMARKS. 

In this correspondence, it has been shown that the Hankel matrix (1) 
defined by Newton's sums can be used to obtain information on the 
location of zeros of a  real  polynomial f ( x ) .  In [6, pp. 208-2361, certain 
other types of Hankel matrices constructed from Markov parameters of 
the real rational function R = p ( x ) / q ( x )  have been  used  in connection 
with the computation of the Cauchy index of R and to prove Routh- 
Hurwitz stability criterion. Interesting  relationships  between  these 
matrices and the Baoutian matrix, defined by two polynomialsp(x)  and 
q(x) ,  have been established  by Anderson in [I] and [2]. It would be quite 
interesting to see if these Hankel matrices of Markov parameters are also 
related to the Hankel matrix (1) of Newton sums used in this correspon- 
dence. 
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Weak and Strong Max-Min Controllability 

M. HEYMANN, M. PACHTER, AND R. J. STERN 

Absstract-Weak and strong max-min  controllability  for a two player 
(time-vaqhgl linear control  system  are defiied. It is proved that the two 
concepts are  equivalent. 

Consider the following  linear  system  with dual controls: 

x = ~ ( t ) x + B , ( t ) u + B , ( r ) u ,  x ( t o ) = x o  (1) 

where x = x ( t ) ~ R "  is the state vector  with x, a specified  initial  state. 
The vectors u = u( t )  €R'''P and u= u(t) ERm=, regarded.  respectively, as 
the pursuer and ecader controls are required to satisfy J I 11 u(f)l12 dt < ca 
and J I llc(t)ll2 dt < 00 on each compact interval I c[to, a), where 11.11 
denotes the Euclidean norm. The matrices A ,  B,. and Be are assumed to 
have entries which are real and measurable on [ tm  ca). For any pair of 
controls u and u we shall denote by x(t)=cp(t , t (pxmu,u)  the correspond- 
ing unique solution of (1) starting at x. at time to ( 1  > to). 
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Definition I :  An event (t,,,xo) in  system  (1)  is wukly max-min confrol- 
luble if for  each announced evader control u on [ro_.oo). there exis? a 
time i= t ( c )  > to and a  pursuer control u on [r,,,t] such that x(t)= 

Definition 2: An event (ro,xa) in  system (I) is strongly mux-min con- 
trollable at time T ( T  > to) if for  each announced evader control u on 
[to, TI there  exists a pursuer control u on [tm 71 such that x ( T ) =  
'p( T, fg.xo.  u, c) = 0. The event (to. xo) is strongly mux-min  conrrollable if it 
is  strongly  max-min controllable for some 7 E [t,,, a). 

Obviously strong max-min  controllability of an event  implies  weak 
max-min controllability. It will be shown  in  this note that the converse is 
also true. In [I] an extensive  investigation of max-min  controllability is 
presented. 

It will be  convenient to transform system (1) by  a change of coordi- 
nates as follows:  let @(?,to} denote the fundamental matrix solution 
corresponding to system (1) and define the vector function 

' p ( r , t m X o , U , C ) = O .  

z (r)=@(t , , , r )x(r) ,  r > t,,. (2) 

Then, it is  readily  verified that z satisfies the following  differential 
equation: 

- 
i = B , ( r ) u - B e ( t ) u ,  z ( ro)=x(ro)=xo 

where Bp(r):=@(ro,r)Bp(r) and BJt): =@(t,,,r)B,(t). Furthermore, it is 
easily noted that z ( t )=O if and only if x(t)=O, whence  system (3) is 
completely  equivalent in respect to max-min  controllability to system (1). 
We  shall.  henceforth, be concerned nith the latter system. 

Define the controllability Grammians for the pursuer and evader by 

where the prime denotes transpose.  Clearly, Wp and We are symmetric 
nonnegative definite ( n  X n) matrices and  it is easily  verified that their 
rank is a nondeaeasing  and left-continuous function of time (the latter 
holding because % ( F ) c  %(F+ G) for  every pair of symmetric non- 
negative  matrices F, G where %(.) denotes range). In [I]  the following 
theorem  is  proved. 

Theorem I :  Given system (3) with zo+O, a necessary and sufficient 
condition for an event (rmza) to  be strongly  max-min controllable in 
finite  time T > to is that the following conditions hold: 

The remainder of this note will be devoted to proving the following 

Theorem 2: Consider  system (3). An event (to,za) is strongly  max-min 

We only have to prove that weak  max-min  controllability  implies 

Let 

theorem. 

controllable if and only if it is weakly max-min controllable. 

strong max-min  controllability  for some finite T > t,,. 

T , :  = inf { t : z o ~ ~ ( w p ( t o , t ) ) } .  
I > I o  

Under the assumption of weak  max-min  controllability we obviously 
have that TI  is  finite, and  due  to Grammian monotonicity, Z ~ E  
4 ( Wp(fmf}) for all t > T,. Hence, if T2 is defined by 

T 2 : =  I >  s u ~ { r : ~ ( ~ ~ V , ( t , r ) ) c 5 1 ( ~ ~ Y , ( r ~ , t ) ) } ,  ro 

it follows from Theorem 1 that (to,z,,) is  strongly  max-min controllable if 
and only  if T2> T I .  (It should be observed that when finite, TI  and T2 
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are points of discontinuity of rank ( Wp(tO,t)) and of rank (W,(t@f)),  
respectively. Also, when T, is  finite,  Grammian left-continuity implies 
that the sup in the definition of T, is attained as a max.) The proof of 
Theorem 2 will be accomplished by  showing that if T2< TI (i.e.,  when 
strong max-min controllability fails to hold), then there exists a  control 
o* against which no u can drive zo to the origin, thereby showing that 
weak  max-min controllability also fails to  hold. 

We shall require the following  lemmas. 
Lemma I: Given system (3) with zopO, assume that TI  is finite and 

that T, < T I .  Let (u,u) be a pair of control functions such that the 
corresponding solution of (3) satisfies z(t)=O for some to< t < 03. Then 
i> T,.. 

Pro08 Suppose ;< T ~ .  If z(ij=~ then the  control u must satisfy 

and 

From (8H10) we conclude that 

zo E a( wP (to, T, 1) (1 1) 

which in view  of Grammian  leftcontinuity violates the  assumption  that 
T2< T,. 0 

Lemma 2: Given system (3), let T,< 00 and let Ti denote  the  first 
discontinuity of rank We(ro, t), t > T,. Then  for each positive E < Ti - T2 
there exi@ a  measurable set Z, of positive measure, Z, c [ T,, T, + E ) ,  such 
that Q(B,(t))~%(W,(t,T,+~)) for all rEZ<. 

Proof: Assume the lemma is false. Then  for some e ,  > 0 we must 
have 

%(B,(t))cQ(W,(t,T,+c,)) (12) 

for almost all rE[T,, T,+ El). Since ~t(ie~t)i~(t))c4(Be(r)) ,  for  all 
t E [ T 2 , T 2 + q )  and since %(Z$=l aiie(t i)B;(ti))cZf=l %(i,(t,)B;(t,)) 
for all a, real, ri E [ T 2 ,  T,+ el), i =  1, 2; . , k where k is an  arbitrary 
positive integer, we conclude from the definition of  the Lebesgue integral 
that 

thus  contradicting the definition of T,. 0 
Lemma 3: Given system (3), let P > T2 be any  point of discontinuity 

of rank We(to,t), and let T' be the first discontinuity of rank W,(t@t), 
1 > T. Then  for each positive e < T'- T there exists a measurable set I, 
of positive measure Z,E[T2 ,T2+~] ,  such  that 1(Be(t))ZQ(W,(ro,T2+ 
E)) for almost all t E [ T,, T2 + e).  

The proof of Lemma 3 is similar to that of Lemma 2 and is therefore 
Omitted. 

Lemma 4: Let z(t) be a measurable R" -valued function and let % 
be a  proper subspace of R". Let Z, cR' be a  measurable set of positive 
measure such that z(t)@% for all r E I c .  Then  there exists a vector h 
such that (h,w)=O for all W E %  and (h,z(t))#O for all tEZc .  

Prooj Consider a  hyperplane 3C such that % c 3C. Each vector z(f) 
is either in  one of the two open half spaces determined by 3C or in X: 
itself. First assume that z(t)gX: almost everywhere. Then choose h 
€XL. If the aforementioned assumption does not  hold,  one  repeats  the 
argument in an appropriate  subspace of X:. 0 

Assume T2 < T I .  We shall now turn  our  attention toward the construc- 
tion of a  control o* such that against w* no t( can force zo to 0 in finite 
time. This of course will complete our proof of Theorem 2. FirstLwe 
shall replace ip(t) with a measurable ( n X p )  matrix  function EJt) 
satisfying the fogowing properties. 

Property I: B,(t)=B,(t), for all tE[ to ,TJ .  
Property 2: %(Wp(to,z))c%( %(to,!,, for all t to where % 
Property 3: W,(ro.t) is constant between consecutive discontinuities 

Property 4: At each discontinuity u of rank @,(t,r), o> T,, we have 

Property 5: %(w,(z))ea(w,(t)), for  all r >  T,. 
One can readily see that  a % satisfying Properties 1-5 can_always be 

built-one first specifies F, and then defines an appropriate E,. Details 
of this elementary recursive (but somewhat tedious) construction are left 
to the reader. Consider now the system 

denotes the Grapnian associated with B,. 

T ~ ,  7, of  rank (We(?@ t)) ,  T, < T~ < T~ 

A ( W e ( t o , u ) ) ~ ~ ( W p ( t O , u + ~ ) ) ,  for all E > O .  

Observe that if we construct  a  control u* such that no u can drive zo to 0 
in system (3') then (by Property 2) this is certajdy the case for system 
(3), which  is what we require. Upon defining TI for system (33  analo- 
gously to TI  for system (3), it follows that T2 < TI  < TI .  The required 
control u* is  now constructed by the following procedure. 

1) On ( r ,  T2) apply an arbitrary evader control. Lemma 1 guarantees 
the impossibility of z(t)=O at  or before T,. 

2) Let T; denote  the first discontinuity of rank W,(to,t), Ti>  T,. If 
T, < TI then  take w* = 0 on [ T2, Ta. Letting e =( Ti - T J / 2 ,  it follows 
that  in  the presence of any u the solutionof (3') satisfies z(t)Ezo+ 
%( ~ , . ( l o , T 2 + e ) )  for all fE[ T,, T;). T2< T ,  implies then that zoB 
% ( F ( t o , T 2 ~ e ) ) ,  and  thus z(r)#O for all IE[T2,T;). Now let T2=Fl. 
Suppose Q(W,(to,t))#R" for all t ,  for otherwise (6) and (7) hold for 
some T and  there is nothing to prove.  Due' to Lemmas 2 4  it is readily 
seen that  there exists a set I, of positive measure, Z, E[ T,, T2+ E), a 
measurable RQ -valued function u on [ T,, T,+ E ) ,  and a -vector h 
E%(W,(to,T,+e)) [a(.) deqoting null space] such that (h,B,(t)u(t)) 
+O for Z E Z ~ .  Now  let (h,B,(t)w*(t)): =maxllD,,<l (h,B,(t)u). The 
maximizing control u*(t) on [ T,, T2+e)  is measurable (see e.g., [2, p. 
1601) and (h,B,(t)u*(t))>O, for all rEZe. Hence, jg+r (~ ,B , (T )U* (T ) )  

for all tE(0 , e ) .  NOW z(t)~z~+ I;, B , ( ~ ) u * ( ~ ) d ~ + ~ ~ . ( ~ , ( t ~ , ~ ~ + c ) ) ,  
for  all t E[ T,, Ti). Hence, z(t)+O, for all t E[ T,, T;) in  the presence of 
any evader control. 

3)  At discontinuities of rank ( We(to,t)) beyond Ti, reapply 2) with 
Lemma 3 replacing the role of Lemma 2. 

Since when played against w* constructed above in 1E3) no pursuer 
control can drive zo to 0, weak max-min controllability is violated. 
Hence, T, > T I ,  concluding the proof of Theorem 2. 

dT > 0, for  all 0 < t < e,  and SO 1 %+' i , (T)U*(T)dT @ %( @to, T,+ E ) ) ,  
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